ГРЭС 1500 Мвт
Страница 18

Количество охлаждающих трубок 2*14740

Длина трубок 9 м.

Сортамент трубок 28*1 мм, 28*2 мм

Материал трубок сплав МНЖ-5-1

Расход охлаждающей воды 2*25740 м³/ч

Гидравлическое сопротивление по водяной стороне. 39,2 кПа (4 м вод. столба)

Конденсатные насосы I ступени :

Расчетный напор в коллекторе конденсатного насоса первой ступени определяется по формуле:

Ркн1=DРбоу+DРэж+DРтр+DРкн2–Рк

где DРбоу – гидравлическое сопротивление обессоливающей установки, 0,6 МПа;

DРэж гидравлическое сопротивление эжекторной группы, 0,07 МПа;

DРтр - гидравлическое сопротивление трубопроводов, 0,05 МПа;

DРкн2 –необходимое давление на всасе конденсатного насоса второй

ступени, 0,2 МПа;

Рк – давление в конденсаторе 0,0035 МПа;

Ркн1=0,6+0,07+0,05+0,2-0,0035= 0,916»92 м.вод.ст

По литературе (л7; стр 369) выбираем конденсатный насос:

количество: 2 ( 1 резервный)

тип: КсВ-1600-90

производительность: 1600 м³/ч

напор: 90 м вод. ст.

Конденсатные насосы II ступени :

Напор конденсатных насосов второй ступени определяем следующим образом:

Ркн2»Рд-DРкн2+DРпнд+DРрку +DРгеод

где Рд – давление в конденсаторе, 0,7 МПа;

DРкн2 – давление создаваемое конденсатным насосом первой ступени, 0,2 МПа;

DРпнд сопротивление теплообменников ПНД1 – 0,05978 МПа; ПНД2 – 0,06762 МПа; ПНД3 0,07938 ПНД4 – 0,0892; ПНД5 – 0,07938 МПа ; DРпнд =0,376 МПа;

Рск – общее гидравлическое сопротивление ПНД, трубопроводов с арматурой » 0,2 МПа -

DРгеод – геодезический подпор, определяется разницей в высотах места входа воды в конденсатный насос и уровнем установки деаэратора. 28м. вод.ст.»0,28 МПа

DРрку – сопротивление регулирующего клапана уровня 0,4 МПа;

Ркн2»0,7-0,2+0,376+0,2+0,28+0,4» 1,756 МПа»180 м.вод.ст

По литературе ( ) выбираем конденсатный насос второго подъема:

количество: 2 ( 1 резервный)

тип: ЦН-1600-220

производительность: 1600 м³/ч

напор: 220м вод. ст.

13. Выбор тягодутьевых установок и дымовой трубы.

Выбор тягодутьевых установок сводится к подбору машины, обеспечивающей производительность и давление, определенные при расчете воздушного и газового трактов, и потребляющей наименьшее количество электроэнергии при эксплуатации.

Для расчета дутьевого вентилятора определим расход

Vдв=Вр´V0(aт-Daт-Daпл+Daвп)´(tхв+273)/273

где Vдв количество холодного воздуха засасываемого дутьевым вентилятором.

Вр – расчетный расход топлива кг/с;

V0 – теоретическое количество воздуха м³/кг; aт– коэфф. избытка воздуха в топке;

Daт – коэфф. присосов воздуха в топке;

Daпл - коэфф. присосов воздуха в системе пылеприготовления;

Daвп – коэфф. присосов воздуха в воздухоподогревателе;

tвзп – температура воздухоподогревателя

tх.в= 30°С

Vдв=296000´4,42(1,2-0,7-0,04+0,25)´(30+273)/273= =1030985 м³/ч

Подача воздуха вентиляторами должна обеспечивать полную производительность парогенератора с запасом в 10%

Vдв.расч =1,1´Vдв=1,1´674= 741,4 м³/с= 1134083 м³/ч

Оснащаем парогенератор двумя дутьевыми вентиляторами, производительностью не менее 567048 м³/ч, один дутьевой вентилятор должен обеспечивать не менее половинной нагрузки парогенератора,. номограмме VII-86 (л4; стр. 249) выбираем центробежный дутьевой вентилятор ВДН-24´2-IIу

Выбор дымососов сводится к подбору машины, обеспечивающей производительность и давление, определенные при расчете воздушного и газового трактов, и потребляющей наименьшее количество электроэнергии при эксплуатации.

Расход газов (в м³/ч) рассчитывается по формуле:

Vд=Вр(Vг.+DaV0)´Jд+273

273

где

Вр – расчетный расход топлива кг/с;

V0 – теоретическое количество воздуха м³/кг; aт– коэфф. избытка;

Страницы: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34