Безкорпусная герметизация полупроводниковых приборов
Страница 4

Усадка полимера при отверждении происходит вследствии испарения растворителя, если оболочку получают из раствора, или кплотнения, если отверждение происходит полимеризацией. Так, как в процессе усадки объём оболочки уменьшается, в ней могут возникнуть только напряжения растяжения. При охлаждении системы полупроводник–полимер, отверждённой при высокой температуре, возникают термические напряжения, также являющиеся напряжениями натяжения. Внутренее механическое напряжения могут вызвать растрескивание и отслаивание полимерной оболочки от полупроводникового кристалла, то есть нарушение герметичности, возникновение механических напряжений в полупроводниковом кристалле, существенно влияющих на электрические характеристики p-n-переходов, нарушение монтажных межсоединений внутри полимерной оболочки и повышение её газо- и влагопроницаемости.

Так как при длительной работе полупроводниковых приборов в полимерном материале могут протекать процессы старения, сопровождающиеся изменением его пластичности и прочности, необходимо использовать полимерные материалы, сохраняющие работоспособность в течение длительного времени. Чтобы обеспечить достаточную работоспособность полимерных оболочек и максимально уменьшить внутренние напряжения, необходимо процесс отверждения проводить при строго контролируемой температуре в наиболее благоприятном диапазоне.

Методы защиты р-п-переходов полупроводниковых кристаллов и пластин.

В процессе хранения и эксплуатации ИМС подвергаются внешним воздействиям, которые обусловлены чаще всего изменением температуры или влажности окружающей среды, увеличением или уменьшением атмосферного давления, присутствием активных веществ в окружающей атмосфере, наличием вибраций, ударов и других факторов. Для защиты полупроводниковых приборов от таких воздействий предусматривается комплекс специальных мер. Наиболее широкое распространение в настоящее время получили два способа защиты полупроводниковых структур: бескорпусная защита и корпусная защита (с использованием различных типов корпусов).

Выбор конструктивно-технологического варианта исполнения бес корпусной защиты определяется в первую очередь назначением и требованиями, предъявленными к защищаемой микросхеме. Например, если предусматривается защита сборочной единицы, в состав которой входит бескорпусная микросхема, то предварительно производится лишь промежуточная технологическая защита микросхемы, обеспечивающая стабильность её параметров на этапе изготовления. Если же бескорпусная микросхема выпускается в виде самостоятельного изделия, то её защита осуществляется с учётом всего комплекса климатических и механических воздействий, предусмотренных техническими условиями эксплуатации на данную микросхему.

Особое требование в случае бескорпусной защиты предъявляются к химической частоте и термостойкости герметизирующих покрытий, к их физико-механическим свойствам, влагопоглащению. Кроме того, герметизирующие материалы должны не только обеспечивать высокую жёсткость создаваемой конструкции, но и устойчивость её к различным видам воздействий.

Для бескорпусной защиты полупроводниковых структур используются в основном неорганические и органические полимерные материалы. Более высокой надёжностью характеризуются покрытия из неорганических материалов, однако, бескорпусная защита на основе органических материалов гораздо дешевле.

Если в процессе эксплуатации или хранения полупроводниковых приборов требуется защита, обеспечивающая их работоспособность в течении промежутка времени, то в этом случае рекомендуется применять корпусную герметизацию. Причём корпуса должны отвечать следующим основным требованиям: обладать достаточной механической прочностью и коррозионной стойкостью; иметь минимальные размеры; обеспечивать чистоту среды, окружающей полупроводниковый прибор; позволять легко и надёжно выполнять электрическое соединение между полупроводниковым приборами печатной платы, на которую устанавливается полупроводниковый прибор; обеспечивать минимальные паразитные ёмкости и индуктивности конструкции; обеспечивать надёжную изоляцию между токопроводящими элементами; быть герметичными и предотвращать проникновение влаги к защищаемой микросхеме; обеспечивать минимальное тепловое сопротивление между полупроводниковой структурой и окружающей средой ; защищать от воздействий электромагнитного поля и радиоактивного излучения; обеспечивать возможность автоматизации процесса сборки; иметь минимальную стоимость.

Страницы: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47