Безкорпусная герметизация полупроводниковых приборовСтраница 27
Первый способ даёт лучшие результаты, но при его использовании создаётся высокая концентрация хлористого водорода, который интенсивно разрушает алюминий. Этот же недостаток неизбежен и при силанировании из газовой фазы, что отрицательно влияет на сплавные кремневые приборы, имеющие алюминиевые электроды. Используя способ силанирования р-п-переходов поргружением в растворы, можно устраивать некоторые недостатки двух других способов. Этот способ позволяет:
— регулировать концентрацию метилхлорсиланов;
— удалять продукты реакции из сферы реакции, подбирая соответствующий растворитель;
— улучшать технологичность процесса, поскольку есть возможность вводить добавки, нейтрализующие соляную кислоту;
— создавать гомогенную среду для поликонденсации плёнки, так как в растворитель переходят продукты гидролиза.
В качестве растворителей обычно применяют ксилиол, толуол и бензол. Большое значение при создании силановой плёнки имеет толщина водного покрытия и стабильность давления паров воды над увлажняемой поверхностью. Кроме того, не меньшее влияние на толщину плёнки имеет структура поверхности, её химический состав, степень гидрофильность.
Силанирование не только закрепляет существующую структуру поверхности, но и в некоторых случаях улучшает электрические параметры переходов, поскольку при нанесении плёнок устраняются структурные дефекты поверхности
Технологический процесс нанесения защитной силановой плёнки состоит в следующем. После травления в кислотном травителе и промывки в деонизированной воде кристаллы с р-п-переходами погружают в жидкость органозамещённого силана на время, в течение которого происходит полное смачивание поверхности. Обычно используют смесь метилхлорсилана и двух частей триметилхлорсилана. Реакция этой смеси в влагой, которая имеется на поверхности кремниевого кристалла, вызывает разложение соляной кислоты и образование тонкой защитной плёнки.
Разновидностью процесса силанирования является получение защитных плёнок пиролитическим осаждением органокремниевых соединений. Кристаллы помещают в молибденовую лодочку, расположенную на нагревателе в кварцевой реакционной трубе, через которую пропускают гелий, предварительно насыщенный тетраэтоксимоносиланом. Температура нагревателя поддерживается равной 800 с. Скорость пропускания газовой смеси над пластинами с р-п-переходами выбирают от 50 до 60 м/ч. Толщина изолирующей плёнки 25 000 А. Скорость выращивания плёнок 800 А/мин.
Затем наносят второй слой изоляционной плёнки, пропуская гелий через сосуд , содержащий жидкий этилтриэтоксисилан. Смесь подают через реакционную трубу в течение 5 минут при температуре 800 С. Толщина второго защитного покрытия 2000 А. Скорость выращивания второго слоя выбирают равной 400 А/мин.
Таким образом, одним из основных преимуществ метода силанирования перед методом защиты переходов лаками и эмалями является возможность химического связывания защитной плёнки с поверхностью р-п-перехода. Это обеспечивает не только надёжную адгезию, но и позволяет устранить некоторые структурные нарушения поверхности, что способствует заметному улучшению электрических параметров переходов.
Защита поверхности р-п-переходов окислением.
Окисление считается в настоящее время наиболее перспективным методом защиты поверхности р-п-переходов. Реальная поверхность германия и кремния после травления при выдержке на воздухе покрывается плёнкой окисла, однако, несмотря на то что окислы германия и кремния обладают хорошими диэлектрическими свойствами и потенциально пригодны для защиты поверхности переходов, образующаяся плёнка очень чувствительна к окружающей среде и не может служить пассивирующим покрытием. Для защиты могут быть использованы только достаточно толстые окисные плёнки, получаемые выращиванием. Задача получения стабильной плёнки двуокиси германия является достаточно сложной. Более просто окисные плёнки получают на кремнии.