Изготавление изделий из пласмассы
Страница 2

В зависимости от состава различают группы полимерных соединений: гомополимеры - полимеры, состоящие из одинаковых звеньев мономеров; сополимеры - полимеры, состоящие из разных исходных звеньев мономеров; элементоорганические - соединения с введен-ными в главную цепь или боковые цепи атомами кремния (кремнийорганические соединения), бора алюминия и др. Эти соединения обладают повышенной теплостойкостью.

Форма молекул может быть: линейная неразветвленная (рис. 1, а), допускающая плотную упаковку; разветвленную (рис. 1, б), труднее упаковываемая и дающая рыхлую структуру; сшитая - лестничная (рис. 1, в), сетчатая (рис. 1, г), паркетная (рис. 1, д), сшитая трехмерно-объемная (рис. 1, е), с густой сеткой поперечных химических связей.

У органических полимерных материалов макроструктура образована либо свернутыми в клубки (глобулы) гибкими макромолекулами, либо пачками-ламелями более жестких макромолекул, параллельно уложенных в несколько рядов (рис. 2, а), так как в этом случае они имеют термодинамически более выгодную форму, при которой значительная часть боковой поверхности прилегает друг к другу. На участках складывания образуются домены, а домены создают фибриллы, связанные проходными участками (рис. 2, б). Несколько доменов, соединяясь по плоскостям складывания, образуют первичные структурные элементы - кристаллы, из которых при охлаждении расплава возникают пластинчатые структуры - ламели. В процессе складывания ламелей концы молекул могут находиться в разных плоскостях; иногда эти концы молекул частично возвращаются в начальную плоскость - в этом случае они создают петли (рис. 3).

2.2. Свойства полимеров.

Все свойства полимеров зависят от их химического состава и молекулярной массы. Прочность, твердость, температура перехода, диэлектрическая проницаемость, электрическая прочность, электросопротивление, тангенс угла диэлектрических потерь и другие свойства у различных полимеров изменяются в широком диапазоне (табл. 1).

Полимеры в твердом состоянии могут быть аморфными и кристаллическими. При нагревании аморфного полимера наблюдают три физических состояния: стеклообразное, высокоэластичное и вязкотекучее. Эти состояния устанавливают на основании кривой термомеханического состояния (рис. 4, кривая 1). Аморфный полимер находится ниже температуры стеклования (Тс) в твердом агрегатном состоянии. При температуре выше Тс полимер находится в высокоэластичном состоянии; молекулярная подвижность при этом становится настолько большой, что структура в ближнем порядке успевает перестраиваться вслед за изменением температуры, а макромолекулы могут изгибаться под действием внешних сил. Общая деформация складывается в этом случае из упругой и запаздывающей высокоэластичной деформации. При упругой деформации изменяются средние межцентровые, межмолекулярные расстояния и валентные углы в полимерной цепи, при высокоэластичной деформации изменяется ориентация и перемещаются на значительные расстояния звенья гибких цепей.

Страницы: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32