Автоматизация процесса буренияСтраница 14
По данным экспериментальных исследований и испытаний, при бурении различными буровыми установками (СКБ-4, 5, 8, ЗИФ-650) скважин глубиной 100-300 м при периоде опроса параметров с обеспечиваются вполне удовлетворительное качество стабилизации режимных параметров бурения, своевременная и эффективная реакция на изменения процессов и ликвидация аномальных технологических ситуаций в начальных стадиях их развития. При таких больших периодах опроса параметров невозможен анализ высокочастотных процессов в бурении, например, вибраций, диапазон которых составляет, по различным оценкам, от сотен герц до десятков килогерц. Для реализации опроса параметров с такими высокими частотами необходимы специальные технические средства и сложный математический аппарат обработки измерений. Поэтому в настоящее время целесообразно проводить специальные исследования высокочастотных процессов в бурении и формировать по их результатам рекомендации по управлению режимами бурения, например, в виде системы ограничений.
Для целей управления режимами бурения в реальном масштабе времени возможно ограничиться решением задачи формирования временного ряда измерений (тренда), который адекватен реальным закономерностям изменения состояния процесса бурения, позволяющего обнаруживать взаимозависимости изменения параметров и прогнозировать тенденции изменения состояния процесса. Качество формирования тренда каждого параметра бурения также определяется точностью измерений отдельных точек (мгновенных значений), составляющих тренд.
Процедура получения мгновенного значения параметра, представляющего собой непрерывный электрический сигнал, заключается в квантовании этого сигнала по уровню, которое состоит в том, что в диапазоне непрерывных значений функции l(t) выбирается конечное число дискретных значений функции, распределенных, например, равномерно по всему диапазону. В момент измерения значения функции l(t) заменяется значением ближайшего дискретного уровня. Функция при этом приобретает ступенчатый вид (рис. номер ). При квантовании возникает погрешность квантования, определяемая шагом квантования . При равномерном квантовании по уровню максимальное значение приведенной погрешности квантования
где - диапазон изменения параметра; (q-1) – число интервалов (шагов) квантования, q-1=().
Однако основная проблема заключается в выделении полезного сигнала на фоне случайных помех, источник которых не измерительные тракты, а стохастические возмущения, возникающие в процессе бурения и являющиеся следствием изменяющихся условий бурения и нестабильности работы бурового оборудования. Задача состоит в формировании измерения требуемого параметра бурения в определенный момент времени таким образом, чтобы совокупность этих измерений отражала закономерное изменение данного параметра в пределах анализируемого временного интервала. В разрабатываемой настоящим дипломе системе указанная проблема решается следующим образом:
Рис. Квантование непрерывного сигнала по уровню.
Формирование одного измерения каждого вида параметров производится по определенному количеству опросов АЦП, которое рассматривается как статистическая выборка n наблюдаемых значений измеряемой величины , …, (под опросом АЦП понимается однократный программный запуск АЦП для измерения мгновенного значения заданного параметра в момент запускаю; быстродействие АЦП ADC0816 позволяет производить опросы с частотой 10-30 Гц в зависимости от амплитуды измеряемого сигнала). В качестве значения параметра вычисляется выборочное среднее – первый момент выборочного распределения случайной величины. Для одномерных распределений – это среднее арифметическое значение по элементам выборки , …,