Лазерная система для измерения статистических характеристик
Страница 6

Известны также устройства [29, 30] для допускового контроля геометрических размеров изделий путем соответствующей обработки их дифракционного изображения сложной фотоэлектрической измерительной системой, либо оптической системой пространственной фильтрации. Однако эти устройства являются узко специализированными и требуют предварительного синтеза сложных голографических пространственных фильтров, что позволяет их использовать лишь для качественного допус-кового контроля изделий.

Таким образом лазерные дифрактометры являются наиболее переспек-тивным научным направлением развития автоматизированного метро-логического оборудования. Оно может быть также успешно использовано и для разработки средств автоматизации контроля статистических характе-ристик квазипериодической структуры ЛЗ. Это, в свою очередь, может быть выполнено лишь с созданием специализированных оптических систем обработки изображений (ОСОИ) на базе когерентных оптических спектро-анализаторов (КОС) пространственных сигналов, положенных в основу практически всех известных лазерных дифрактометров.

2. Обзор схем построения лазерных

дифрактометров

Интенсивное развитие этих систем началось в начале 80-х годов. Построение голографических и дифракционных оптических систем для метрологии основано на получении изображений Френеля, либо Фурье исследуемого объекта с последующим анализом их параметров фото-электической измерительной системой.

Основным преимуществом таких метрологических систем, перед ви-зуальными оптическими измерительными приборами, является высокая производительность, что позволяет автоматизировать ряд метрологических процессов в промышленности. Где требуется интегральная комплексная оценка качества изделия.

Для формирования изображений Фурье или Френеля исследуемого объекта используют когерентный оптический спектроанализатор прост-ранственных сигналов, схему построения и геометрические параметры которого выбирают в зависимости от характера решаемой задачи.

В настоящее время уже стала классической схема когерентного оптического спектроанализатора (КОС), приведенная на рис.1.

Рис.1. Принципиальная схема когерентного оптического спектро-

анализатора:

1. Лазер;

2. Телескопическая схема Кеплера;

3. Входной транспарант;

4. Фурье-объектив;

5. Дифракционное изображение.

КОС состоит из расположенных последовательно на одной оптической оси источника когерентного излучения - лазера 1 и телескопической систе-мы 2 Кеплера, формирующей плоскую когерентную световую волну. Эта волна падает на входной транспарант 3 с фотографической записью исследуемого сигнала. Входной транспарант 3 расположен в передней фокальной плоскости фурье-объектива 4 (объектива свободного от аберра-ции дисторсии и поперечной сферической ) с фокусным растоянием . На входном транспаранте 3 световая волна дифрагирует, и фурье-объективом 4 в задней плоскости 5 формируется дифракционное изображение исследуемого сигнала, которое является его фурье-образом и описывается выражением

, где А0 -амплитуда плос-кой монохроматической световой волны в плоскости ; - длина волны; - пространственные частоты, равные и , где х2, у2 - пространственные координаты в плоскости 5.

Таким образом, распределение комплексных амплитуд световых полей в задней и передней плоскостях фурье-объектива 4 оптической системы связаны между собой парой преобразований Фурье. Поле в задней фокальной плоскости является пространственным амплитудно-фазовым спектром сигнала, помещенного в его передней фокальной плоскости.

Страницы: 1 2 3 4 5 6 7 8 9 10 11 12