Лазерная система для измерения статистических характеристикСтраница 10
Из выражения (2.4) видно, что переменные х и у функции взаимо-независимы, а поэтому эта функция является функцией с разделяемыми переменными, и может быть представлена в виде произведения функций и , т.е. (2.5).
В выражении (2.5) функция является финитной в пределах высо-ты перекрытия зубьев верхней и нижней гребенок пространственной структуры ЛЗ вдоль координаты х, как показано на рис.4б.
Для оптической системы КОС пространственная структура ЛЗ является квазипериодическим сигналом. В свою очередь, основными характеристи-ками такого сигнала, т.е. пространственной структуры ЛЗ, являются:
· средние размеры и ширины стенок и щелей, а также средние квадратические отклонения СКО и от них соответственно;
· законы распределения и размеров стенок и щелей;
· спектральная и корреляционная функции.
Для описания спектральных и корреляционных функций случайных сигналов часто используются характеристические функции. Характеристи-ческая функция случайной величины является фурье-образом ее закона распределения , т.е. , где - простран-ственная частота, измеряемая в [мм-1], поскольку в рассматриваемом случае координата является пространственной и имеет размерность [мм].
Тогда с учетом получим:
, а вводя замену переменных вида
. Этот интеграл в новых пределах интегрирования от до можно представить через элементарные функции следующим выражением
(2.6) , и аналогично (2.7).
Полученные выражения (2.6) и (2.7) являются характеристическими функциями квазипериодической пространственной структуры ЛЗ с нормаль-ным законом распределения ширины стенок и щелей.
Как в оптических, так и в электронных устройствах спектрального анали-за сигналов, существует возможность получения как амплитудного, так и энергетического их спектров. Однако в теории спектрального анализа пространственных сигналов известно, что при использовании квадратичес-ких фотодетекторов для регистрации параметров дифракционного изобра-жения, формируемого оптической системой КОС, автоматически на ее вы-ходе формируется энергетический спектр исследуемого сигнала. Парамет-ры такого спектра могут быть измерены соответствующими контрольно-измерительными приборами, а форма его определена с применением мето-дов статистической радиооптики путем интегрального преобразования Винера-Хинчина, либо на основе теоремы Хилли.