Вода и ее применение в современных технологиях
Страница 10

По-видимому, здесь отчасти кроется причина образования в некоторых случаях так называемого донного льда, о котором подробнее будет идти речь в дальнейшем.

Как правило, различные модификации льда даже при высоких давлениях по плотности близки к плот­ности обычного льда (различия в плотности обычно не превышают 6%). Однако в астрофизическом цент­ре университета в Толедо (США, штат Огайо) амери­канскими учеными А. Дальсом и А. Венджером была открыта сверхплотная модификация льда при темпе­ратуре ниже минус 173 °С и давлении (6— 8) -Ю-3 мм рт. ст. Плотность этой модификации 2,3 г/см3 (по плотности он близок к гнейсу — 2,4 г/см3). Этот лед аморфен и может играть большую роль в физике планет и комет.

Замерзание природной воды зависит от темпера­туры, давления, минерализации (количества растворенных веществ) и изотопного состава. Так, при кон­центрации раствора поваренной соли NaCI 5 г/л он замерзнет при минус 0,38; 50 г/л — при минус 3,78 и, наконец, 100 г/л—при минус 7,44 °С. Дальнейшее увеличение минерализации не предохраняет раствор от замерзания, происходит процесс вымораживания, которым пользуются, например, при добыче соли. В результате образуется чистый лед, а концентрация оставшегося жидкого раствора повышается.

Каждой, температуре соответствует вполне определенная концентрация раствора. Так будет продолжаться до тех пор, пока температура не упадет до минус 21,9°С, а концентрация раствора при этом достигнет 224 г/л, после чего раствор затвердеет, образуется эвтектическая смесь кристаллов льда и соли, называемая криогидратом. По данным Н. Н. Зу­бова [1945], лед образуется из морской воды при минерализации 10 г/л при температуре 0,5; при 100 г/л — при 6,4, а при 260 г/л при минус 23 °С.

Лед очень прозрачен для солнечной энергии, осо­бенно для ультрафиолетового излучения. Снег, хотя и меньше, но тоже довольно хорошо пропускает сол­нечное излучение. Но даже самые тонкие (1—2мм)слои льда совершенно не прозрачны для тепловой длинноволновой радиации и земного излучения. Эта особенность имеет большое значение для нагре­вания воды подо льдом. Теплопроводность льда довольно высокая—53·10-4 кал/ (см · сек · °С); для срав­нения: теплопроводность воды—14, а воздуха— 0,57 кал/(см · сек · °С).

излучений и т. д.

1.9 Серебряная вода и ее применение.

Еще 2500 лет назад пер­сидский царь Кир во время походов пользовался водой, сохраняемой в серебряных сосудах. В древней Индии для обезвреживания воды от патогенной микрофлоры в нее погружали раска­ленное серебро. Многовековой опыт показал, что ионы серебра подавляют размножение многих бак­терий.

Впервые научные наблюдения над серебряной во­дой в конце XIX в. провел швейцарский ботаник К. В. Негели. С тех пор во многих странах было выполнено значительное число работ по изучению эффективных способов ее получения и применения, выпущена обильная литература о серебряной воде. В нашей стране разработаны и выпущены в продажу специальные приборы для получения в домашних условиях электролитического раствора серебра, Серебряная вода использовалась при полетах космо­навтов. В Японии и в США серебро применяется для обеззараживания воды в плавательных бассей­нах, а в Китае — для производства минеральных и фруктовых вод. Серебряная вода может применяться для консервирования сливочного масла, маргарина, меланжа, молока, микстур и даже для ускорения процессов старения вин и улучшения их вкусовых качеств.

Страницы: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19