Восстановление железаСтраница 2
Еще одним, и, конечно, наиболее интересным способом восстановления железа, является возможность – использовать чистый водород. Сам процесс восстановления пойдет достаточно быстро, более того, при этом не возникает лишних примесей: продукт восстановления – железо и вода. Однако получение и хранение водорода сопряжено со множеством чисто технических и экономических трудностей. Поэтому чистый водород пока что используют лишь для получения металлических порошков.
Говоря о российских основах метода прямого восстановления железа, следует вспомнить, что в начале семидесятых годов в Туле существовал филиал ЦНИИчермета, где под руководством А. Н. Редько проводились работы по прямому восстановлению железа. Во всем мире для этой цели использовали шахтные печи, как и в древности, а Редько А. Н. создал опытно-промышленную конвертерную машину, где окатыши восстанавливались продуктами кислородной конверсии природного газа. Шахтные печи, с точки зрения специалистов, и дороже и хуже управляемы. Кроме того, они дают металл, примеси которого составляют не менее 8 %. А в установке Редько степень металлизации окатышей достигает 98 %, так что количество примесей снижается в четыре раза. Эти установки широко используются сейчас для получения порошков. Работы лаборатории прямого восстановления и послужили основой первой технологической модели Старо-Оскольского электрометаллургического комбината, для получения губчатого железа высочайшего качества.
Как известно, черная металлургия после электроэнергетики прочно занимает второе место по расходу топливных ресурсов. И подобно ей все увеличивает свои аппетиты. Если прибавить к этому изрядную долю электроэнергии, потребляемой многочисленными комбинатами металлургической промышленности — а она стремительно растет,— становится ясно, сколь необходимо было бы найти хотя бы для специальной металлургии новые источники энергии. Так родилась идея радиационного переплава стали. Радиационные печи интересны, конечно, и тем, что их можно питать энергией самого разнообразного происхождения, лишь бы она была лучистой.
Гораздо приятнее вспомнить день рождения "мирного атома". Он датируется абсолютно точно — это пуск первой в мире атомной электростанции в городе Обнинске 26 июня 1954 года.
С тех пор освобожденная энергия атома хорошо послужила человечеству. По подсчетам некоторых специалистов, к концу века доля энергии, вырабатываемой атомными электростанциями мира, увеличится до 30—40 процентов. В разных странах строится сейчас около двухсот АЭС, причем непрерывно улучшается технология, рождаются новые, более экономичные конструкции, наконец, с появлением так называемых бридерных реакторов -размножителей резко увеличились потенциальные запасы ядерного горючего.
Прежде чем посмотреть, как можно использовать атомную энергию в металлургии, вспомним, что собой представляет современный ядерный реактор классического типа, использующий реакцию деления ядер тяжелого металла - урана.
Процесс деления происходит в так называемой активной зоне. Там и выделяется энергия. Тепло отводится из активной зоны специальным теплоносителем - вода, тяжелая вода, жидкие металлы. Затем эту энергию утилизируют. Схема устоявшаяся, традиционная: теплообменник - турбина - генератор. И помчался по проводам электрический ток, полученный столь необычным способом. "Атомное электричество", по сути дела, работает и на металлургию, так как входит составной частью в электросистемы и, следовательно, участвует в любых устройствах электрометаллургии.
Однако под атомной металлургией мы понимаем не только использование тепла ядерного реактора. Будущий атомно-металлургический комплекс мыслится как нечто передовое во всех своих звеньях.
Современная технология получения черных металлов требует достаточно высоких температур: выплавка чугуна - 1600 градусов, нагрев – 1400 градусов, термическая обработка проката — 1250 градусов.